Genome-wide CRISPR/Cas9-knockout in human induced Pluripotent Stem Cell (iPSC)-derived macrophages

Sci Rep. 2021 Feb 19;11(1):4245. doi: 10.1038/s41598-021-82137-z.

Abstract

Genome engineering using CRISPR/Cas9 technology enables simple, efficient and precise genomic modifications in human cells. Conventional immortalized cell lines can be easily edited or screened using genome-wide libraries with lentiviral transduction. However, cell types derived from the differentiation of induced Pluripotent Stem Cells (iPSC), which often represent more relevant, patient-derived models for human pathology, are much more difficult to engineer as CRISPR/Cas9 delivery to these differentiated cells can be inefficient and toxic. Here, we present an efficient, lentiviral transduction protocol for delivery of CRISPR/Cas9 to macrophages derived from human iPSC with efficiencies close to 100%. We demonstrate CRISPR/Cas9 knockouts for three nonessential proof-of-concept genes-HPRT1, PPIB and CDK4. We then scale the protocol and validate for a genome-wide pooled CRISPR/Cas9 loss-of-function screen. This methodology enables, for the first time, systematic exploration of macrophage involvement in immune responses, chronic inflammation, neurodegenerative diseases and cancer progression, using efficient genome editing techniques.