Unravelling actionable biology using transcriptomic data to integrate mitotic index and Ki-67 in the management of lung neuroendocrine tumors

Oncotarget. 2021 Feb 2;12(3):209-220. doi: 10.18632/oncotarget.27874.


Pulmonary neuroendocrine tumors (NETs) are a heterogeneous family of malignancies whose classification relies on morphology and mitotic rate, unlike extrapulmonary neuroendocrine tumors that require both mitotic rate and Ki-67. As mitotic count is proportional to Ki-67, it is crucial to understand if Ki-67 can complement the existing diagnostic guidelines, as well as discover the benefit of these two markers to unravel the biological heterogeneity. In this study, we investigated the association of mitotic rate and Ki-67 at gene- and pathway-level using transcriptomic data in lung NET malignancies. Lung resection tumor specimens obtained from 28 patients diagnosed with NETs were selected. Mitotic rate, Ki-67 and transcriptomic data were obtained for all samples. The concordance between mitotic rate and Ki-67 was evaluated at gene-level and pathway-level using gene expression data. Our analysis revealed a strong association between mitotic rate and Ki-67 across all samples and cell cycle genes were found to be differentially ranked between them. Pathway analysis indicated that a greater number of pathways overlapped between these markers. Analyses based on lung NET subtypes revealed that mitotic rate in carcinoids and Ki-67 in large cell neuroendocrine carcinomas provided comprehensive characterization of pathways among these malignancies. Among the two subtypes, we found distinct leading-edge gene sets that drive the enrichment signal of commonly enriched pathways between mitotic index and Ki-67. Overall, our findings delineated the degree of benefit of the two proliferation markers, and offers new layer to predict the biological behavior and identify high-risk patients using a more comprehensive diagnostic workup.

Keywords: Ki-67; lung neuroendocrine tumors; mitotic index; pathway analysis; transcriptomics.