Saliva as a testing specimen with or without pooling for SARS-CoV-2 detection by multiplex RT-PCR test

PLoS One. 2021 Feb 23;16(2):e0243183. doi: 10.1371/journal.pone.0243183. eCollection 2021.


Background: Sensitive and high throughput molecular detection assays are essential during the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vast majority of the SARS-CoV-2 molecular assays use nasopharyngeal swab (NPS) or oropharyngeal swab (OPS) specimens collected from suspected individuals. However, using NPS or OPS as specimens has apparent drawbacks, e.g. the collection procedures for NPS or OPS specimens can be uncomfortable to some people and may cause sneezing and coughing which in turn generate droplets and/or aerosol particles that are of risk to healthcare workers, requiring heavy use of personal protective equipment. There have been recent studies indicating that self-collected saliva specimens can be used for molecular detection of SARS-CoV-2 and provides more comfort and ease of use for the patients. Here we report the performance of QuantiVirus™ SARS-CoV-2 test using saliva as the testing specimens with or without pooling.

Methods: Development and validation studies were conducted following FDA-EUA and molecular assay validation guidelines. Using SeraCare Accuplex SARS-CoV-2 reference panel, the limit of detection (LOD) and clinical performance studies were performed with the QuantiVirus™ SARS-CoV-2 test. For clinical evaluation, 85 known positive and 90 known negative clinical NPS samples were tested. Additionally, twenty paired NPS and saliva samples collected from recovering COVID-19 patients were tested and the results were further compared to that of the Abbott m2000 SARS-CoV-2 PCR assay. Results of community collected 389 saliva samples for COVID-19 screening by QuantiVirus™ SARS-CoV-2 test were also obtained and analyzed. Additionally, testing of pooled saliva samples was evaluated.

Results: The LOD for the QuantiVirus™ SARS-CoV-2 test was confirmed to be 100-200 copies/mL. The clinical performance studies using contrived saliva samples indicated that the positive percentage agreement (PPA) of the QuantiVirus™ SARS-CoV-2 test is 100% at 1xLOD, 1.5xLOD and 2.5xLOD. No cross-reactivity was observed for the QuantiVirus™ SARS-CoV-2 test with common respiratory pathogens. Testing of clinical samples showed a positive percentage agreement (PPA) of 100% (95% CI: 94.6% to 100%) and a negative percentage agreement (NPA) of 98.9% (95% CI: 93.1% to 99.9%). QuantiVirus™ SARS CoV-2 test had 80% concordance rate and no significant difference (p = 0.13) between paired saliva and NPS specimens by Wilcoxon matched pairs signed rank test. Positive test rate was 1.79% for 389 saliva specimens collected from local communities for COVID-19 screening. Preliminary data showed that saliva sample pooling up to 6 samples (1:6 pooling) for SARS-CoV-2 detection is feasible (sensitivity 94.8% and specificity 100%).

Conclusion: The studies demonstrated that the QuantiVirus™ SARS-CoV-2 test has a LOD of 200 copies/mL in contrived saliva samples. The clinical performance of saliva-based testing is comparable to that of NPS-based testing. Pooling of saliva specimens for SARS-CoV-2 detection is feasible. Saliva based and high-throughput QuantiVirus™ SARS-CoV-2 test offers a highly desirable testing platform during the ongoing COVID-19 pandemic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Female
  • Humans
  • Male
  • Middle Aged
  • Multiplex Polymerase Chain Reaction / methods*
  • Pandemics
  • Reverse Transcriptase Polymerase Chain Reaction / methods*
  • SARS-CoV-2 / pathogenicity*
  • Saliva / virology*
  • Specimen Handling / methods*
  • Young Adult

Grants and funding

The authors received no specific funding for this work. This study was conducted by DiaCarta R&D and does not involve extramural funding. JW, KT and CML provided leftover and deidentified clinical specimens including testing validation samples and helped data analysis and manuscript preparation. DiaCarta didn’t provided financial compensation to JW, KT and CML. The funder Diacarta Inc provided support in the form of salaries for authors [QS, HR, JL, LP, RM, YL, ZZ, AZ and MS], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.