Rpgrip1l controls ciliary gating by ensuring the proper amount of Cep290 at the vertebrate transition zone

Mol Biol Cell. 2021 Apr 15;32(8):675-689. doi: 10.1091/mbc.E20-03-0190. Epub 2021 Feb 24.

Abstract

A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / metabolism*
  • Adaptor Proteins, Signal Transducing / physiology
  • Animals
  • Antigens, Neoplasm / metabolism*
  • Antigens, Neoplasm / physiology
  • Axoneme / metabolism
  • Basal Bodies / metabolism
  • Cell Cycle Proteins / metabolism*
  • Cell Cycle Proteins / physiology
  • Centrioles / metabolism
  • Cilia / metabolism*
  • Cilia / physiology
  • Ciliopathies / metabolism
  • Ciliopathies / physiopathology
  • Cytoskeletal Proteins / metabolism*
  • Cytoskeletal Proteins / physiology
  • HEK293 Cells
  • Humans
  • Mice
  • Mutation
  • NIH 3T3 Cells
  • Signal Transduction

Substances

  • Adaptor Proteins, Signal Transducing
  • Antigens, Neoplasm
  • Cell Cycle Proteins
  • Cep290 protein, human
  • Cep290 protein, mouse
  • Cytoskeletal Proteins
  • Ftm protein, mouse
  • RPGRIP1L protein, human