Age-related parietal GABA alterations in children with autism spectrum disorder

Autism Res. 2021 May;14(5):859-872. doi: 10.1002/aur.2487. Epub 2021 Feb 25.


GABA is the primary inhibitory neurotransmitter in the brain, and is essential to the balance of cortical excitation and inhibition. Reductions in GABA are proposed to result in an overly excitatory cortex that may cause, or contribute to, symptoms of autism spectrum disorder (ASD). This study employed a cross-sectional design to explore GABA+ differences in ASD and the impact of age, comparing 4-12 year olds with ASD (N = 24) to typically developing children (N = 35). GABA+ concentration was measured using edited magnetic resonance spectroscopy in the left parietal lobe. This study used a mixed model to investigate group differences between children with ASD and typically developing children. There was a significant difference in GABA+ levels between the groups, a significant effect of age and interaction between age and diagnostic group. The ASD group showed an association between GABA+ and age, with GABA+ levels gradually increasing with age (r = 0.59, p = 0.003). Typically developing children did not show age-related change in GABA+ concentration (r = 0.09, p = 0.60). By the age of 9, children with ASD showed GABA+ levels that were comparable to their typically developing peers. This study suggests that children with ASD have initially lower levels of GABA+ in the left parietal lobe compared to typically developing children, and that these initially lower levels of GABA+ increase with age in ASD within this region. It is suggested that this developmental shift of GABA+ levels within the left parietal lobe provides a possible explanation for the previously found reductions in childhood that does not persist in adults. LAY SUMMARY: This study measured levels of GABA in the left parietal lobe using magnetic resonance spectroscopy in children with ASD and typically developing children. GABA levels were initially lower in the ASD group, and increased with age, while GABA did not change with age in the typically developing group. This suggests that alterations in GABA signaling may be associated with ASD in childhood. Autism Res 2021, 14: 859-872. © 2021 International Society for Autism Research, Wiley Periodicals LLC.

Keywords: GABA (gamma-aminobutyric acid); biomarker; children; magnetic resonance spectroscopy (MRS); neurochemistry; parietal lobe.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Autism Spectrum Disorder*
  • Child
  • Cross-Sectional Studies
  • Humans
  • Magnetic Resonance Imaging
  • Magnetic Resonance Spectroscopy
  • gamma-Aminobutyric Acid


  • gamma-Aminobutyric Acid