In vitro Quantitative Imaging Assay for Phagocytosis of Dead Neuroblastoma Cells by iPSC-Macrophages

J Vis Exp. 2021 Feb 14;(168). doi: 10.3791/62217.

Abstract

Microglia orchestrate neuroimmune responses in several neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Microglia clear up dead and dying neurons through the process of efferocytosis, a specialized form of phagocytosis. The phagocytosis function can be disrupted by environmental or genetic risk factors that affect microglia. This paper presents a rapid and simple in vitro microscopy protocol for studying microglial efferocytosis in an induced pluripotent stem cell (iPSC) model of microglia, using a human neuroblastoma cell line (SH-SY5Y) labeled with a pH-sensitive dye for the phagocytic cargo. The procedure results in a high yield of dead neuroblastoma cells, which display surface phosphatidylserine, recognized as an "eat-me" signal by phagocytes. The 96-well plate assay is suitable for live-cell time-lapse imaging, or the plate can be successfully fixed prior to further processing and quantified by high-content microscopy. Fixed-cell high-content microscopy enables the assay to be scaled up for screening of small molecule inhibitors or assessing the phagocytic function of genetic variant iPSC lines. While this assay was developed to study phagocytosis of whole dead neuroblastoma cells by iPSC-macrophages, the assay can be easily adapted for other cargoes relevant to neurodegenerative diseases, such as synaptosomes and myelin, and other phagocytic cell types.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Biological Assay / methods*
  • Cell Death
  • Cell Line, Tumor
  • Data Analysis
  • Fluorescent Dyes / chemistry
  • Human Embryonic Stem Cells / cytology
  • Humans
  • Hydrogen-Ion Concentration
  • Induced Pluripotent Stem Cells / cytology
  • Induced Pluripotent Stem Cells / metabolism*
  • Macrophages / metabolism*
  • Neuroblastoma / pathology*
  • Phagocytosis*
  • Quality Control
  • Reproducibility of Results
  • Time-Lapse Imaging

Substances

  • Fluorescent Dyes