Protein quantification is traditionally performed through enzyme-linked immunosorbent assay (ELISA), which involves long preparation times. To overcome this, new approaches use aptamers as an alternative to antibodies. In this paper, we present a new approach to quantify proteins with short DNA aptamers through polymerase chain reaction (PCR) resulting in shorter protocol times with comparatively improved limits of detection. The proposed method includes a novel way to quantify both the target protein and the corresponding short DNA-aptamers simultaneously, which also allows us to fully characterize the performance of aptasensors. Human leptin is used as a target protein to validate this technique, because it is considered an important biomarker for obesity-related studies. In our experiments, we achieved the lowest limit of detection of 100 pg/mL within less than 2 h, a limit affected by the dissociation constant of the leptin aptamer, which could be improved by selecting a more specific aptamer. Because of the simple and inexpensive approach, this technique can be employed for Lab-On-Chip implementations and for rapid "on-site" quantification of proteins.
Keywords: aptamers; leptin; protein quantification; qPCR; target-induced disassociation.