The Arabidopsis STE20/Hippo kinase SIK1 regulates polarity independently of PIN proteins

Biochem Biophys Res Commun. 2021 Apr 16;549:21-26. doi: 10.1016/j.bbrc.2021.02.083. Epub 2021 Feb 27.

Abstract

Polarity is a feature of life. In higher plants, non-autonomous polarity is largely directed by auxin, the morphogen that drives its own polarized flow, Polar Auxin Transport (PAT), to guide patterning events such as phyllotaxis and tropism. The plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers are rate-limiting factors in PAT. In yeasts and metazoans, the STE20 kinases are key players in cell polarity. We had previously characterized SIK1 as a STE20/Hippo orthologue in Arabidopsis and confirmed its function in mitotic exit and organ growth. Here we explore the possible link between SIK1, auxin, PIN, and polarity. Abnormal phyllotaxis and gravitropism were observed in sik1. sik1 was more sensitive to exogenous auxin in primary root elongation and lateral root emergence. RNA-Seq revealed reduced expression in auxin biosynthesis genes and induced expression of auxin flux carriers in sik1. However, normal tissue- and sub-cellular localization patterns of PIN1 and PIN2 were observed in sik1. The dark-induced vacuolar degradation of PIN2 also appeared normal in sik1. An additive phenotype was observed in the sik1 pin1 double mutant, indicating that SIK1 does not directly regulate PIN1. The polarity defects of sik1 are hence unlikely mediated by PINs and await future exploration.

Keywords: Auxin; Gravitropism; PIN2; Phyllotaxis; Polarity; SIK1.