Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022;62(18):4951-4969.
doi: 10.1080/10408398.2021.1879730. Epub 2021 Mar 5.

Microbial detoxification of mycotoxins in food and feed

Affiliations
Review

Microbial detoxification of mycotoxins in food and feed

Hongwen Xu et al. Crit Rev Food Sci Nutr. 2022.

Abstract

Mycotoxins are metabolites produced by fungi growing in food or feed, which can produce toxic effects and seriously threaten the health of humans and animals. Mycotoxins are commonly found in food and feed, and are of significant concern due to their hepatotoxicity, nephrotoxicity, carcinogenicity, mutagenicity, and ability to damage the immune and reproductive systems. Traditional physical and chemical detoxification methods to treat mycotoxins in food and feed products have limitations, such as loss of nutrients, reagent residues, and secondary pollution to the environment. Thus, there is an urgent need for new detoxification methods to effectively control mycotoxins and treat mycotoxin pollution. In recent years, microbial detoxification technology has been widely used for the degradation of mycotoxins in food and feed because this approach offers the potential for treatment with high efficiency, low toxicity, and strong specificity, without damage to nutrients. This article reviews the application of microbial detoxification technology for removal of common mycotoxins such as Aflatoxin, Ochratoxin, Zearalenone, Deoxynivalenol, and Fumonisins, and discusses the development trend of this important technology.

Keywords: Microbial detoxification; aflatoxin; deoxynivalenol; fumonisins; ochratoxin; zearalenone.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources