Preliminary Evaluation of Protective Efficacy of Inactivated Senecavirus A on Pigs

Life (Basel). 2021 Feb 18;11(2):157. doi: 10.3390/life11020157.

Abstract

Senecavirus A (SVA), formerly known as Seneca Valley virus (SVV), causes vesicular symptoms in adult pigs and acute death of neonatal piglets. This pathogen has emerged in major swine producing countries around the world and caused significant economic losses to the pig industry. Thus, it is necessary to develop strategies to prevent and control SVA infection. Herein, an SVA strain (named GD-ZYY02-2018) was isolated from a pig herd with vesicular symptoms in Guangdong province of China in 2018. The present study aimed to carry out the phylogenetic analysis of the GD-ZYY02-2018 strain, determine its pathogenicity in finishing pigs, and assess the protective efficacy of the inactivated GD-ZYY02-2018 strain against virus challenge. The results of phylogenetic analysis showed that the SVA GD-ZYY02-2018 strain belonged to the USA-like strains and had a close genetic relationship with recent Chinese SVA strains. Animal challenge experiment showed that 100-day-old pigs inoculated intranasally with SVA GD-ZYY02-2018 strain developed vesicular lesion, low fever, viremia, and virus shedding in feces. The immunization challenge experiment showed that pigs vaccinated with inactivated GD-ZYY02-2018 strain could produce a high titer of anti-SVA neutralizing antibody and no vesicular lesion, fever, viremia, and virus shedding in feces was observed in vaccinated pigs after challenge with GD-ZYY02-2018 strain, indicating that inactivated GD-ZYY02-2018 could protect finishing pigs against the challenge of homologous virus. In conclusion, preliminary results indicated that inactivated GD-ZYY02-2018 could be used as a candidate vaccine for in-depth research and might be conducive to the prevention and control of SVA infection.

Keywords: Senecavirus A; inactivated vaccine; pathogenicity; phylogenetic analysis; protective efficacy.