Smooth-pursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey

J Neurophysiol. 1988 Mar;59(3):952-77. doi: 10.1152/jn.1988.59.3.952.


1. Anatomical and single-unit recording studies suggest that the dorsolateral pontine nucleus (DLPN) in monkey is a major link in the projection of descending visual motion information to the cerebellum. Such studies coupled with cortical and cerebellar lesion results suggest a major role for this basilar pontine region in the mediation of smooth-pursuit eye movements. 2. To provide more direct evidence that this pontine region is involved in the control of smooth-pursuit eye movements, focal chemical lesions were made in DLPN in the vicinity of previously recorded visual motion and pursuit-related neurons. Eye movement responses were subsequently recorded in these lesioned animals under several behavioral paradigms. 3. A major deficit in smooth-pursuit performance was produced after unilateral DLPN lesions generated either reversibly with lidocaine or more permanently with ibotenic acid. Pursuit impairments were observed during steady-state tracking of sinusoidal target motion as well as during the initiation of pursuit tracking to sudden ramp target motion. Through the use of the latter technique, initial eye acceleration was reduced to less than one-half of normal for animals with large lesions of the dorsolateral and lateral pontine nuclei. 4. The pursuit deficit in all animals was directional in nature and was not dependent on the visual hemifield in which the motion stimulus occurred. The largest effect for horizontal tracking occurred in all animals for pursuit directed ipsilateral to the lesion. Animals also showed major deficits in one or both directions of vertical pursuit, although the primary direction of the vertical impairment was variable from animal to animal. 5. Chemical lesions in the DLPN also produced comparable deficits in the initiation of optokinetic-induced smooth eye movements in the ipsilateral direction. In contrast to this effect on the initial optokinetic response, in the one lesioned animal studied during prolonged constant velocity optokinetic drum rotation, smooth eye speed increased slowly over a 10- to 15-s period to reach a level that closely matched drum speed. These results suggest that pathways outside the DLPN can generate the steady-state optokinetic response. 6. Saccades to stationary targets were normal after DLPN lesions, but corrective saccades made to targets moving in the direction ipsilateral to the lesion were much more hypometric than similar prelesion control saccades. 7. The pursuit deficits produced by lidocaine injections recovered within 30 min. The ibotenic acid deficits were maximal approximately 1 day after the injection and recovered rapidly thereafter over a time period of 3-7 days.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Eye Movements*
  • Ibotenic Acid / pharmacology
  • Lidocaine
  • Macaca
  • Macaca fascicularis
  • Motion
  • Nystagmus, Physiologic / drug effects
  • Pons / physiology*
  • Pursuit, Smooth*
  • Retina / physiology
  • Saccades


  • Ibotenic Acid
  • Lidocaine