Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 23;15(3):5118-5128.
doi: 10.1021/acsnano.0c10269. Epub 2021 Mar 9.

Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors

Affiliations

Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors

Fengtong Ji et al. ACS Nano. .

Abstract

Micro- and nanomachines as feasible agents to exploit the microworld have attracted extensive research interest, particularly in the manipulation of soft nanorobots at small scales. Herein, we propose a model for regulating the motion of a swinging flexible nanomotor (SFN) driven by an oscillating magnetic field. Multisegments of an SFN are synthesized from nickel, gold, and porous silver. The coupling of magnetic actuation and the swinging pattern of SFNs are studied to reveal their mobility. Additionally, an optimal frequency occurs from the coupling of magnetic torque and structural deformation, rather than the simply considered step-out phenomenon. Meanwhile, a fluidic trapping region is formulated alongside the SFN. Such a trapping region is demonstrated by trapping a living neutrophil and accomplishing in vitro transportation using fluidic mediation. On-demand cargo delivery can be realized using a programmable magnetic field, and SFNs can be recycled with ease after manipulation owing to environmental concerns. In this study, we demonstrated the properties of SFNs that are useful bases for their customization and control. These flexible nanomotors may have the potential to promote drug delivery and biomedical operations in noncontact modes.

Keywords: cell transportation; flexible nanomotor; fluidic trapping; magnetic actuation; swinging motion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources