Engineered SARS-CoV-2 receptor binding domain improves immunogenicity in mice and elicits protective immunity in hamsters

bioRxiv. 2021 Mar 4;2021.03.03.433558. doi: 10.1101/2021.03.03.433558. Preprint


Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). 1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. 2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs. 3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. 4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. 7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

Publication types

  • Preprint