Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis

J Plant Physiol. 2021 May:260:153388. doi: 10.1016/j.jplph.2021.153388. Epub 2021 Feb 12.

Abstract

In angiosperms, mature pollen is wrapped by a pollen wall, which is important for maintaining pollen structure and function. Pollen walls provide protection from various environmental stresses and preserve pollen germination and pollen tube growth. The pollen wall structure has been described since pollen ultrastructure investigations began in the 1960s. Pollen walls, which are the most intricate cell walls in plants, are composed of two layers: the exine layer and intine layer. Pollen wall formation is a complex process that occurs via a series of biological events that involve a large number of genes. In recent years, many reports have described the molecular mechanisms of pollen exine development. The formation process includes the development of the callose wall, the wavy morphology of primexine, the biosynthesis and transport of sporopollenin in the tapetum, and the deposition of the pollen coat. The formation mechanism of the intine layer is different from that of the exine layer. However, few studies have focused on the regulatory mechanisms of intine development. The primary component of the intine layer is pectin, which plays an essential role in the polar growth of pollen tubes. Demethylesterified pectin is mainly distributed in the shank region of the pollen tube, which can maintain the hardness of the pollen tube wall. Methylesterified pectin is mainly located in the top region, which is beneficial for improving the plasticity of the pollen tube top. In this review, we summarize the developmental process of the anther, pollen and pollen wall in Arabidopsis; furthermore, we describe the research progress on the pollen wall formation pattern and its molecular mechanisms in detail.

Keywords: Intine; PME; Pollen exine; Pollen tube growth; Regulatory mechanism.

Publication types

  • Review

MeSH terms

  • Arabidopsis / cytology
  • Arabidopsis / genetics*
  • Cell Wall / metabolism*
  • Pollen / growth & development*