Development of motor circuits: From neuronal stem cells and neuronal diversity to motor circuit assembly

Curr Top Dev Biol. 2021;142:409-442. doi: 10.1016/bs.ctdb.2020.11.010. Epub 2020 Dec 19.


In this review, we discuss motor circuit assembly starting from neuronal stem cells. Until recently, studies of neuronal stem cells focused on how a relatively small pool of stem cells could give rise to a large diversity of different neuronal identities. Historically, neuronal identity has been assayed in embryos by gene expression, gross anatomical features, neurotransmitter expression, and physiological properties. However, these definitions of identity are largely unlinked to mature functional neuronal features relevant to motor circuits. Such mature neuronal features include presynaptic and postsynaptic partnerships, dendrite morphologies, as well as neuronal firing patterns and roles in behavior. This review focuses on recent work that links the specification of neuronal molecular identity in neuronal stem cells to mature, circuit-relevant identity specification. Specifically, these studies begin to address the question: to what extent are the decisions that occur during motor circuit assembly controlled by the same genetic information that generates diverse embryonic neuronal diversity? Much of the research addressing this question has been conducted using the Drosophila larval motor system. Here, we focus largely on Drosophila motor circuits and we point out parallels to other systems. And we highlight outstanding questions in the field. The main concepts addressed in this review are: (1) the description of temporal cohorts-novel units of developmental organization that link neuronal stem cell lineages to motor circuit configuration and (2) the discovery that temporal transcription factors expressed in neuronal stem cells control aspects of circuit assembly by controlling the size of temporal cohorts and influencing synaptic partner choice.

Keywords: Drosophila; Hemilineage; Hox genes; Lineage; Neuronal stem cell; Notch signaling; Spatial transcription factors; Synaptic partnerships; Temporal transcription factors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Drosophila*
  • Motor Cortex
  • Neurons*
  • Stem Cells*