Quantify the combined effects of temperature and force on the stability of DNA hairpin

J Phys Condens Matter. 2021 Apr 23;33(18). doi: 10.1088/1361-648X/abee38.

Abstract

OxDNA, as a successful coarse-grain model, has been applied to reproduce the thermodynamic and mechanical properties of both single- and double-stranded DNA. In current simulation, oxDNA is extended to explore the combined effects of temperature and force on the stability of DNA hairpin and its free energy landscape. Simulations were carried out at different forces and temperatures, at each temperature, a 18-base-pair DNA hairpin dynamically transited between folded state and unfolded state, and the separation between two states is consistent with the full contour length of single-stranded DNA in the unfolded state. Two methods were used to identify the critical force of DNA hairpin at each temperature and the critical forces obtained from two methods were consistent with each other and gradually decreased with the increasing temperature from 300 K to 326 K. The critical force at 300 K is reasonably consistent with the single molecule result of DNA hairpin with the same stem length. The two-state free energy landscape can be elucidated from the probability distribution of DNA hairpin extension and its dependence on the force and temperature is totally different. The increasing temperature not only reduces the free energy barrier, but also alters the position of transition point along the extension coordinate, resulting in the reduction of folding distance and the extension of unfolding distance, but their sum is not obviously dependent on the temperature. Generally, an assumption that the location of transition state in two-state energy landscape is independent of the stretching force is used to analyze the data of the single molecule experiment, but current simulation results indicate that effects of stretching forces on the location of transition state in two-state energy landscape are dependent on temperature. At relatively high temperature, stretching force can also change the location of transition state in the free energy landscape.

Keywords: DNA hairpin; OxDNA; critical force; free energy landscape; kinetics and thermodynamics.

MeSH terms

  • Computer Simulation
  • DNA* / chemistry
  • Inverted Repeat Sequences
  • Temperature*
  • Thermodynamics

Substances

  • DNA