Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar 12;12(1):177.
doi: 10.1186/s13287-021-02252-6.

Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes

Affiliations
Free PMC article
Review

Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes

Jessica C Garbern et al. Stem Cell Res Ther. .
Free PMC article

Abstract

Current methods to differentiate cardiomyocytes from human pluripotent stem cells (PSCs) inadequately recapitulate complete development and result in PSC-derived cardiomyocytes (PSC-CMs) with an immature or fetal-like phenotype. Embryonic and fetal development are highly dynamic periods during which the developing embryo or fetus is exposed to changing nutrient, oxygen, and hormone levels until birth. It is becoming increasingly apparent that these metabolic changes initiate developmental processes to mature cardiomyocytes. Mitochondria are central to these changes, responding to these metabolic changes and transitioning from small, fragmented mitochondria to large organelles capable of producing enough ATP to support the contractile function of the heart. These changes in mitochondria may not simply be a response to cardiomyocyte maturation; the metabolic signals that occur throughout development may actually be central to the maturation process in cardiomyocytes. Here, we review methods to enhance maturation of PSC-CMs and highlight evidence from development indicating the key roles that mitochondria play during cardiomyocyte maturation. We evaluate metabolic transitions that occur during development and how these affect molecular nutrient sensors, discuss how regulation of nutrient sensing pathways affect mitochondrial dynamics and function, and explore how changes in mitochondrial function can affect metabolite production, the cell cycle, and epigenetics to influence maturation of cardiomyocytes.

Keywords: Cardiomyocytes; Maturation; Metabolic regulation; Mitochondria; Stem cells.

PubMed Disclaimer

Conflict of interest statement

RTL is a co-founder, scientific advisory board member, and private equity holder of Elevian, Inc. Elevian also provides sponsored research support to the Lee Laboratory. RTL is a member of the scientific advisory board of Novo Biosciences.

Figures

Fig. 1
Fig. 1
Metabolic sensors and mitochondria. Metabolic sensors detect changes in oxygen, nutrient, or hormone levels to induce or inhibit mitochondrial biogenesis or removal by mitophagy. Crosstalk between the AMP-activated kinase (AMPK), hypoxia-inducible factor (HIF), and mechanistic target of rapamycin (mTOR) signaling pathways can alter the balance of mitochondrial responses to nutrients or other metabolic signals
Fig. 2
Fig. 2
Metabolic transitions during development. Metabolic transitions from the embryonic to fetal to postnatal states regulate mitochondrial morphology and function, cell cycle state, cardiomyocyte maturation, and metabolite production
Fig. 3
Fig. 3
Mitochondrial dynamics. Mitochondria undergo dynamic processes of biogenesis, fusion, fission, and mitophagy. Balance of fission and fusion processes are needed to maintain normal mitochondrial function. An imbalance of fission/fusion leads mitochondrial dysfunction: excessive fission can lead to cell death and excessive fusion is often seen in senescence. Nutrient sensors AMPK and mTOR can regulate mitochondrial biogenesis and mitophagy
Fig. 4
Fig. 4
Mitochondrial permeability transition pore and cardiomyocyte development. During early development, the mPTP is open and increased ROS signaling facilitates cardiomyocyte differentiation. During later development, metabolic transitions trigger closure of the mPTP, which facilitates cardiomyocyte maturation. This is accompanied by an increase in the mitochondrial membrane potential and reduction in ROS, which also facilitate cardiomyocyte maturation. Abnormal opening of the mPTP can be triggered by elevated ROS, calcium, or glucose and can be seen in diseased states and may prevent cardiomyocyte maturation
Fig. 5
Fig. 5
Quiescence and senescence in cardiomyocytes. Cardiomyocytes are proliferative during the fetal state but exit the cell cycle shortly after birth to enter a quiescent state. Stimuli including excessive glucose, insulin, or reactive oxygen species can induce a pathological senescent state. Cell cycle arrest with p53 upregulation leads to quiescence with inhibition of mTOR signaling but senescence with activation of mTOR signaling. In vitro culture conditions using high glucose or high insulin may also induce a senescent state and inhibition of these processes and promotion of quiescence may be important to promote cardiomyocyte maturation
Fig. 6
Fig. 6
Summary of time course of metabolic changes affecting mitochondria and cardiomyocyte maturation. Dynamic changes in levels of substrates (pink) (oxygen, lactate, glucose, insulin, fatty acids, T3, glucocorticoids) affect the metabolic sensor signaling pathways (blue) (hypoxia-inducible factors (HIFs), mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK)) during fetal and postnatal cardiomyocyte development. These metabolic sensors can regulate mitochondrial function and coordinate mitochondrial dynamics throughout development. PGC1α, peroxisome proliferator-activated receptor γ coactivator 1α; mPTP, mitochondrial permeability transition pore

Similar articles

Cited by

References

    1. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–175. doi: 10.1038/nprot.2012.150.. - DOI - PMC - PubMed
    1. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17(6):341–359. doi: 10.1038/s41569-019-0331-x.. - DOI - PMC - PubMed
    1. Hu D, Linders A, Yamak A, Correia C, Kijlstra JD, Garakani A, et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1alpha and LDHA. Circ Res. 2018;123(9):1066–1079. doi: 10.1161/CIRCRESAHA.118.313249.. - DOI - PMC - PubMed
    1. Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports. 2019;13(4):657–668. doi: 10.1016/j.stemcr.2019.08.013. - DOI - PMC - PubMed
    1. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304. doi: 10.1016/j.yjmcc.2014.04.005. - DOI - PMC - PubMed

Publication types