Alignment of a topological defect by an activity gradient

Phys Rev E. 2021 Feb;103(2-1):022703. doi: 10.1103/PhysRevE.103.022703.

Abstract

As a method for controlling active materials, researchers have suggested designing patterns of activity on a substrate, which should guide the motion of topological defects. To investigate this concept, we model the behavior of a single defect of topological charge +1/2, moving in an activity gradient. This modeling uses three methods: (1) approximate analytic solution of hydrodynamic equations, (2) macroscopic, symmetry-based theory of the defect as an effective oriented particle, and (3) numerical simulation. All three methods show that an activity gradient aligns the defect orientation, and hence should be useful to control defect motion.