Automatic inference of demographic parameters using generative adversarial networks
- PMID: 33745225
- PMCID: PMC8596911
- DOI: 10.1111/1755-0998.13386
Automatic inference of demographic parameters using generative adversarial networks
Abstract
Population genetics relies heavily on simulated data for validation, inference and intuition. In particular, since the evolutionary 'ground truth' for real data is always limited, simulated data are crucial for training supervised machine learning methods. Simulation software can accurately model evolutionary processes but requires many hand-selected input parameters. As a result, simulated data often fail to mirror the properties of real genetic data, which limits the scope of methods that rely on it. Here, we develop a novel approach to estimating parameters in population genetic models that automatically adapts to data from any population. Our method, pg-gan, is based on a generative adversarial network that gradually learns to generate realistic synthetic data. We demonstrate that our method is able to recover input parameters in a simulated isolation-with-migration model. We then apply our method to human data from the 1000 Genomes Project and show that we can accurately recapitulate the features of real data.
Keywords: demographic inference; evolutionary modelling; generative adversarial network; simulated data.
© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.
Figures
Similar articles
-
INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA.bioRxiv [Preprint]. 2023 Jul 9:2023.03.07.531546. doi: 10.1101/2023.03.07.531546. bioRxiv. 2023. Update in: Genetics. 2024 Apr 3;226(4):iyae024. doi: 10.1093/genetics/iyae024 PMID: 36945387 Free PMC article. Updated. Preprint.
-
Interpreting generative adversarial networks to infer natural selection from genetic data.Genetics. 2024 Apr 3;226(4):iyae024. doi: 10.1093/genetics/iyae024. Genetics. 2024. PMID: 38386895 Free PMC article.
-
Towards effective machine learning in medical imaging analysis: A novel approach and expert evaluation of high-grade glioma 'ground truth' simulation on MRI.Int J Med Inform. 2021 Feb;146:104348. doi: 10.1016/j.ijmedinf.2020.104348. Epub 2020 Nov 27. Int J Med Inform. 2021. PMID: 33285357
-
Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.Comput Methods Programs Biomed. 2020 Jun;189:105275. doi: 10.1016/j.cmpb.2019.105275. Epub 2019 Dec 12. Comput Methods Programs Biomed. 2020. PMID: 31978805
-
GADMA2: more efficient and flexible demographic inference from genetic data.Gigascience. 2022 Dec 28;12:giad059. doi: 10.1093/gigascience/giad059. Epub 2023 Aug 23. Gigascience. 2022. PMID: 37609916 Free PMC article. Review.
Cited by
-
INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA.bioRxiv [Preprint]. 2023 Jul 9:2023.03.07.531546. doi: 10.1101/2023.03.07.531546. bioRxiv. 2023. Update in: Genetics. 2024 Apr 3;226(4):iyae024. doi: 10.1093/genetics/iyae024 PMID: 36945387 Free PMC article. Updated. Preprint.
-
A Novel Approach Utilizing Domain Adversarial Neural Networks for the Detection and Classification of Selective Sweeps.Adv Sci (Weinh). 2024 Apr;11(14):e2304842. doi: 10.1002/advs.202304842. Epub 2024 Feb 2. Adv Sci (Weinh). 2024. PMID: 38308186 Free PMC article.
-
MaLAdapt Reveals Novel Targets of Adaptive Introgression From Neanderthals and Denisovans in Worldwide Human Populations.Mol Biol Evol. 2023 Jan 4;40(1):msad001. doi: 10.1093/molbev/msad001. Mol Biol Evol. 2023. PMID: 36617238 Free PMC article.
-
Localizing Post-Admixture Adaptive Variants with Object Detection on Ancestry-Painted Chromosomes.Mol Biol Evol. 2023 Apr 4;40(4):msad074. doi: 10.1093/molbev/msad074. Mol Biol Evol. 2023. PMID: 36947126 Free PMC article.
-
On the prospect of achieving accurate joint estimation of selection with population history.Genome Biol Evol. 2022 Jul 2;14(7):evac088. doi: 10.1093/gbe/evac088. Genome Biol Evol. 2022. PMID: 35675379 Free PMC article.
References
-
- Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G. S. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Goodfellow, I. , Harp, A. , Irving, G. , Isard, M. , & Jia, Y. , … Zheng, X. (2015). TensorFlow: Large‐scale machine learning on heterogeneous systems. Available from: https://www.tensorflow.org/Softwaretensorflow.org
-
- Adrion, J. R. , Cole, C. B. , Dukler, N. , Galloway, J. G. , Gladstein, A. L. , Gower, G. , Kyriazis, C. C. , Ragsdale, A. P. , Tsambos, G. , Baumdicker, F. , Carlson, J. , Cartwright, R. A. , Durvasula, A. , Gronau, I. , Kim, B. Y. , McKenzie, P. , Messer, P. W. , Noskova, E. , Ortega‐Del Vecchyo, D. , … Kern, A. D. (2020). A community‐maintained standard library of population genetic models. eLife, 9, 10.7554/eLife.54967 - DOI - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
