Vitamin D deficiency in critically ill COVID-19 ARDS patients

Clin Nutr. 2022 Dec;41(12):3089-3095. doi: 10.1016/j.clnu.2021.03.001. Epub 2021 Mar 7.


Background & aims: Vitamin D's pleiotropic effects include immune modulation, and its supplementation has been shown to prevent respiratory tract infections. The effectivity of vitamin D as a therapeutic intervention in critical illness remains less defined. The current study analyzed clinical and immunologic effects of vitamin D levels in patients suffering from coronavirus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS).

Methods: This was a single-center retrospective study in patients receiving intensive care with a confirmed SARS-CoV-2 infection and COVID-19 ARDS. 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D serum levels, pro- and anti-inflammatory cytokines and immune cell subsets were measured on admission as well as after 10-15 days. Clinical parameters were extracted from the patient data management system. Standard operating procedures included the daily administration of vitamin D3 via enteral feeding.

Results: A total of 39 patients with COVID-19 ARDS were eligible, of which 26 were included in this study as data on vitamin D status was available. 96% suffered from severe COVID-19 ARDS. All patients without prior vitamin D supplementation (n = 22) had deficient serum levels of 25-hydroxyvitamin D. Vitamin D supplementation resulted in higher serum levels of 25-hydroxyvitamin D but not did not increase 1,25-dihydroxyvitamin D levels after 10-15 days. Clinical parameters did not differ between patients with sufficient or deficient levels of 25-hydroxyvitamin D. Only circulating plasmablasts were higher in patients with 25-hydroxyvitamin D levels ≥30 ng/ml (p = 0.029). Patients with 1,25-dihydroxyvitamin D levels below 20 pg/ml required longer mechanical ventilation (p = 0.045) and had a worse acute physiology and chronic health evaluation (APACHE) II score (p = 0.048).

Conclusion: The vast majority of COVID-19 ARDS patients had vitamin D deficiency. 25-hydroxyvitamin D status was not related to changes in clinical course, whereas low levels of 1,25-dihydroxyvitamin D were associated with prolonged mechanical ventilation and a worse APACHE II score.

Keywords: Acute respiratory distress syndrome; Critical care; Immune response; Nutrient supplementation; Vitamin D.

MeSH terms

  • COVID-19* / complications
  • Calcifediol
  • Critical Illness / therapy
  • Humans
  • Respiratory Distress Syndrome* / therapy
  • Retrospective Studies
  • SARS-CoV-2
  • Vitamin D
  • Vitamin D Deficiency*
  • Vitamins / therapeutic use


  • Vitamin D
  • Calcifediol
  • Vitamins