Estimating COVID-19 exposure in a classroom setting: A comparison between mathematical and numerical models

Phys Fluids (1994). 2021 Feb 1;33(2):021904. doi: 10.1063/5.0040755. Epub 2021 Feb 24.

Abstract

The COVID-19 pandemic has driven numerous studies of airborne-driven transmission risk primarily through two methods: Wells-Riley and computational fluid dynamics (CFD) models. This effort provides a detailed comparison of the two methods for a classroom scenario with masked habitants and various ventilation conditions. The results of the studies concluded that (1) the Wells-Riley model agrees with CFD results without forced ventilation (6% error); (2) for the forced ventilation cases, there was a significantly higher error (29% error); (3) ventilation with moderate filtration is shown to significantly reduce infection transmission probability in the context of a classroom scenario; (4) for both cases, there was a significant amount of variation in individual transmission route infection probabilities (up to 220%), local air patterns were the main contributor driving the variation, and the separation distance from infected to susceptible was the secondary contributor; (5) masks are shown to have benefits from interacting with the thermal plume created from natural convection induced from body heat, which pushes aerosols vertically away from adjacent students.