Synergistic Ice Inhibition Effect Enhances Rapid Freezing Cryopreservation with Low Concentration of Cryoprotectants

Adv Sci (Weinh). 2021 Jan 29;8(6):2003387. doi: 10.1002/advs.202003387. eCollection 2021 Mar.

Abstract

Despite recent advances in controlling ice formation and growth, it remains a challenge to design anti-icing materials in various fields from atmospheric to biological cryopreservation. Herein, tungsten diselenide (WSe2)-polyvinyl pyrrolidone (PVP) nanoparticles (NPs) are synthesized through one-step solvothermal route. The WSe2-PVP NPs show synergetic ice regulation ability both in the freezing and thawing processes. Molecularly speaking, PVP containing amides group can form hydrogen bonds with water molecules. At a macro level, the WSe2-PVP NPs show adsorption-inhibition and photothermal conversation effects to synergistically restrict ice growth. Meanwhile, WSe2-PVP NPs are for the first time used for the cryopreservation of human umbilical vein endothelial cell (HUVEC)-laden constructs based on rapid freezing with low concentrations of cryoprotectants (CPAs), the experimental results indicate that a minimal concentration (0.5 mg mL-1) of WSe2-PVP NPs can increase the viabilities of HUVECs in the constructs post cryopreservation (from 55.8% to 83.4%) and the cryopreserved constructs can also keep good condition in vivo within 7 days. Therefore, this work provides a novel strategy to synergistically suppress the formation and growth of the ice crystalsfor the cryopreservation of cells, tissues, or organs.

Keywords: cryopreservation; ice inhibition; synergistic effect; tungsten diselenide‐polyvinyl pyrrolidone nanoparticles.