Purpose: In a sex-inclusive cohort of patients with adolescent idiopathic scoliosis (AIS): (1) assess the relationship between 3D curve severity, curve flexibility, and paraspinal muscle fatty infiltration, and (2) describe three-dimensional (3D) fatty infiltration of the paraspinal muscles.
Methods: Fat signal fraction of the paravertebral muscles was measured in pre-operative magnetic resonance images (MRIs) of males and females with AIS at the apex, ± 1, and ± 2 levels from the apex of the curve (n = 62). In a subset of patients with biplanar erect radiographic imaging (n = 35), 3D measures of deformity (axial rotation of the apical vertebrae, thoracic kyphosis, and coronal Cobb angle) were measured.
Results: Contrary to previous studies, no relationship between coronal Cobb angle and fatty infiltration was found. However, axial apical rotation and sagittal Cobb angle were found to be significant predictors of paravertebral fatty infiltration (R2 = 0.196-0.222). Curve concavity, female sex, and proximity to the curve apex were found to be the strongest predictors of fatty infiltration. Greater fatty infiltration of the paravertebral muscles was found on the concave side of the curve (15-24% vs. 11-13%), with increasing fatty infiltration toward the apex of the curve. Fatty infiltration was protected on the convex side of the curve, with no differences in the amount of fatty infiltration across levels.
Conclusion: These findings highlight that coronal curve severity and flexibility are not the primary influencing factors for the degree of paraspinal fatty infiltration in patients with AIS. This may have implications for nonsurgical rehabilitation strategies such as bracing and physical therapy.
Level of evidence: II.
Keywords: Adolescent idiopathic scoliosis; Erector spinae; Fatty infiltration; Magnetic resonance imaging; Muscle degeneration; Paravertebral muscles.
© 2021. Scoliosis Research Society.