An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks - linked to the COVID-19 pandemic

Water Res. 2021 May 15:196:117033. doi: 10.1016/j.watres.2021.117033. Epub 2021 Mar 10.

Abstract

The production of disposable plastic face masks (DPFs) in China alone has reached to approximately 200 million a day, in a global effort to tackle the spread of the new SARS-CoV-2 virus. However, improper and unregulated disposals of these DPFs has been and will continue to intensify the plastic pollution problem we are already facing. This study focuses on the emission of pollutants from 7 DPF brands that were submerged in water to simulate environmental conditions if these DPFs were littered. The DPF leachates were filtered by inorganic membranes, and both particle-deposited organic membranes and the filtrates were characterized using techniques such as FTIR, SEM-EDX, Light Microscopy, ICP-MS and LC-MS. Micro and nano scale polymeric fibres, particles, siliceous fragments and leachable inorganic and organic chemicals were observed from all of the tested DPFs. Traces of concerning heavy metals (i.e. lead up to 6.79 µg/L) were detected in association with silicon containing fragments. ICP-MS also confirmed the presence of other leachable metals like cadmium (up to 1.92 µg/L), antimony (up to 393 µg/L) and copper (up to 4.17 µg/L). LC-MS analysis identified polar leachable organic species related to plastic additives and contaminants; polyamide-66 monomer and oligomers (nylon-66 synthesis), surfactant molecules, dye-like molecules and polyethylene glycol were all tentatively identified in the leachate. The toxicity of some of the chemicals found and the postulated risks of the rest of the present particles and molecules, raises the question of whether DPFs are safe to be used on a daily basis and what consequences are to be expected after their disposal into the environment.

MeSH terms

  • COVID-19*
  • China
  • Environmental Pollutants*
  • Humans
  • Masks
  • Pandemics
  • SARS-CoV-2
  • Water Pollutants, Chemical* / analysis

Substances

  • Environmental Pollutants
  • Water Pollutants, Chemical