The influence of environmental and core temperature on cyclooxygenase and PGE2 in healthy humans

Sci Rep. 2021 Mar 22;11(1):6531. doi: 10.1038/s41598-021-84563-5.

Abstract

Whether cyclooxygenase (COX)/prostaglandin E2 (PGE2) thermoregulatory pathways, observed in rodents, present in humans? Participants (n = 9) were exposed to three environments; cold (20 °C), thermoneutral (30 °C) and hot (40 °C) for 120 min. Core (Tc)/skin temperature and thermal perception were recorded every 15 min, with COX/PGE2 concentrations determined at baseline, 60 and 120 min. Linear mixed models identified differences between and within subjects/conditions. Random coefficient models determined relationships between Tc and COX/PGE2. Tc [mean (range)] increased in hot [+ 0.8 (0.4-1.2) °C; p < 0.0001; effect size (ES): 2.9], decreased in cold [- 0.5 (- 0.8 to - 0.2) °C; p < 0.0001; ES 2.6] and was unchanged in thermoneutral [+ 0.1 (- 0.2 to 0.4) °C; p = 0.3502]. A relationship between COX2/PGE2 in cold (p = 0.0012) and cold/thermoneutral [collapsed, condition and time (p = 0.0243)] was seen, with higher PGE2 associated with higher Tc. A within condition relationship between Tc/PGE2 was observed in thermoneutral (p = 0.0202) and cold/thermoneutral [collapsed, condition and time (p = 0.0079)] but not cold (p = 0.0631). The data suggests a thermogenic response of the COX/PGE2 pathway insufficient to defend Tc in cold. Further human in vivo research which manipulates COX/PGE2 bioavailability and participant acclimation/acclimatization are warranted to elucidate the influence of COX/PGE2 on Tc.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Biological Availability
  • Body Temperature
  • Body Temperature Regulation / genetics*
  • Cold Temperature
  • Cyclooxygenase 2 / genetics*
  • Dinoprostone / genetics*
  • Hot Temperature
  • Humans
  • Male
  • Skin Temperature / genetics*

Substances

  • Cyclooxygenase 2
  • Dinoprostone