PARsylated transcription factor EB (TFEB) regulates the expression of a subset of Wnt target genes by forming a complex with β-catenin-TCF/LEF1

Cell Death Differ. 2021 Sep;28(9):2555-2570. doi: 10.1038/s41418-021-00770-7. Epub 2021 Mar 22.

Abstract

Wnt signaling is mainly transduced by β-catenin via regulation of the β-catenin destruction complex containing Axin, APC, and GSK3β. Transcription factor EB (TFEB) is a well-known master regulator of autophagy and lysosomal biogenesis processes. TFEB's nuclear localization and transcriptional activity are also regulated by various upstream signals. In this study, we found that Wnt signaling induces the nuclear localization of TFEB and the expression of Wnt target genes is regulated by TFEB-β-catenin-TCF/LEF1 as well as β-catenin-TCF/LEF1 complexes. Our biochemical data revealed that TFEB is a part of the β-catenin destruction complex, and destabilization of the destruction complex by knockdown of either Axin or APC causes nuclear localization of TFEB. Interestingly, RNA-sequencing analysis revealed that about 27% of Wnt3a-induced genes were TFEB dependent. However, these "TFEB mediated Wnt target genes" were different from TFEB target genes involved in autophagy and lysosomal biogenesis processes. Mechanistically, we found that Tankyrase (TNKS) PARsylates TFEB with Wnt ON signaling, and the nuclear localized PARsylated TFEB forms a complex with β-catenin-TCF/LEF1 to induce the "TFEB mediated Wnt target genes". Finally, we found that in various types of cancer, the levels of TFEB mediated Wnt target genes exhibit strong correlations with the level of Axin2, which represents the activity of Wnt signaling. Overall, our data suggest that Wnt signaling induces the expression of a subset of genes that are distinct from previously known genes regulated by the β-catenin-TCF/LEF1 complex or TFEB, by forming a transcription factor complex consisting of PARsylated TFEB and β-catenin-TCF/LEF1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy
  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors / metabolism*
  • Cell Line, Tumor
  • Cell Proliferation
  • HeLa Cells
  • Humans
  • Lymphoid Enhancer-Binding Factor 1 / metabolism*
  • Oncogenes / genetics*
  • Transfection
  • Wnt Signaling Pathway
  • beta Catenin / metabolism*

Substances

  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
  • LEF1 protein, human
  • Lymphoid Enhancer-Binding Factor 1
  • TFEB protein, human
  • beta Catenin