Investigation of Antibacterial Activity and Probiotic Properties of Strains Belonging to Lactobacillus and Bifidobacterium Genera for Their Potential Application in Functional Food and Feed Products

Probiotics Antimicrob Proteins. 2021 Oct;13(5):1387-1403. doi: 10.1007/s12602-021-09777-5. Epub 2021 Mar 22.

Abstract

For novel food/feed product formulation, the selection of the right culture with probiotic properties is essential. The purpose of this research was to evaluate antibacterial activity and probiotic features of Lactobacillus and Bifidobacterium spp. for its potential application in functional food/feed products as supplement. The evaluation of antibacterial activities was carried out by agar diffusion assay and broth inhibition assay methods against twelve pathogenic strains belonging to Staphylococcus aureus, Escherichia coli, Staphylococcus chromogenes, and Staphylococcus hyicus species. Metabolites produced by Lactobacillus paracasei subsp. paracasei DSM 20020, L. paracasei subsp. paracasei DSM 4905, and L. gasseri DSM 20077 inhibited the growth of all tested pathogens. The strains were characterized in vitro for their probiotic characteristics such as resistance to low pH and bile salts, antibiotic sensitivity by gradient diffusion using MIC Test Strips, autoaggregation and coaggregation assay with E. coli DSM 27503, and antioxidant activity by 1-diphenyl-2-picrylhydrazyl (DPPH) and 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. The results demonstrated that tested probiotic properties varied among the strains. Lactobacillus spp. tolerated pH 3 for 4 h, while 8 of 14 strains survived 4 h in pH 2. Most of tested strains were able to tolerate 0.3% bile salts for 4 h. All tested strains were sensitive to ampicillin. No gelatinase and hemolytic activities were detected. These results suggest Lactobacillus acidophilus DSM 20079, Bifidobacterium pseudolongum DSM 20099, and Bifidobacterium animalis DSM 20105 as probiotic candidates for the development of functional food/feed.

Keywords: Antimicrobial activity; Bifidobacterium spp.; Lactobacillus spp.; Probiotic properties.

MeSH terms

  • Animal Feed
  • Bifidobacterium*
  • Functional Food*
  • Lactobacillus*
  • Probiotics*