Non-contrast dual-energy CT virtual ischemia maps accurately estimate ischemic core size in large-vessel occlusive stroke

Sci Rep. 2021 Mar 24;11(1):6745. doi: 10.1038/s41598-021-85143-3.


Dual-energy CT (DECT) material decomposition techniques may better detect edema within cerebral infarcts than conventional non-contrast CT (NCCT). This study compared if Virtual Ischemia Maps (VIM) derived from non-contrast DECT of patients with acute ischemic stroke due to large-vessel occlusion (AIS-LVO) are superior to NCCT for ischemic core estimation, compared against reference-standard DWI-MRI. Only patients whose baseline ischemic core was most likely to remain stable on follow-up MRI were included, defined as those with excellent post-thrombectomy revascularization or no perfusion mismatch. Twenty-four consecutive AIS-LVO patients with baseline non-contrast DECT, CT perfusion (CTP), and DWI-MRI were analyzed. The primary outcome measure was agreement between volumetric manually segmented VIM, NCCT, and automatically segmented CTP estimates of the ischemic core relative to manually segmented DWI volumes. Volume agreement was assessed using Bland-Altman plots and comparison of CT to DWI volume ratios. DWI volumes were better approximated by VIM than NCCT (VIM/DWI ratio 0.68 ± 0.35 vs. NCCT/DWI ratio 0.34 ± 0.35; P < 0.001) or CTP (CTP/DWI ratio 0.45 ± 0.67; P < 0.001), and VIM best correlated with DWI (rVIM = 0.90; rNCCT = 0.75; rCTP = 0.77; P < 0.001). Bland-Altman analyses indicated significantly greater agreement between DWI and VIM than NCCT core volumes (mean bias 0.60 [95%AI 0.39-0.82] vs. 0.20 [95%AI 0.11-0.30]). We conclude that DECT VIM estimates the ischemic core in AIS-LVO patients more accurately than NCCT.