Associations and limited shared genetic aetiology between bipolar disorder and cardiometabolic traits in the UK Biobank

Psychol Med. 2021 Mar 26;52(16):1-10. doi: 10.1017/S0033291721000945. Online ahead of print.

Abstract

Background: People with bipolar disorder (BPD) are more likely to die prematurely, which is partly attributed to comorbid cardiometabolic traits. Previous studies report cardiometabolic abnormalities in BPD, but their shared aetiology remains poorly understood. This study examined the phenotypic associations and shared genetic aetiology between BPD and various cardiometabolic traits.

Methods: In a subset of the UK Biobank sample (N = 61 508) we investigated phenotypic associations between BPD (ncases = 4186) and cardiometabolic traits, represented by biomarkers, anthropometric traits and cardiometabolic diseases. To determine shared genetic aetiology in European ancestry, polygenic risk scores (PRS) and genetic correlations were calculated between BPD and cardiometabolic traits.

Results: Several traits were significantly associated with increased risk for BPD, namely low total cholesterol, low high-density lipoprotein cholesterol, high triglycerides, high glycated haemoglobin, low systolic blood pressure, high body mass index, high waist-to-hip ratio; and stroke, coronary artery disease and type 2 diabetes diagnosis. BPD was associated with higher polygenic risk for triglycerides, waist-to-hip ratio, coronary artery disease and type 2 diabetes. Shared genetic aetiology persisted for coronary artery disease, when correcting PRS associations for cardiometabolic base phenotypes. Associations were not replicated using genetic correlations.

Conclusions: This large study identified increased phenotypic cardiometabolic abnormalities in BPD participants. It is found that the comorbidity of coronary artery disease may be based on shared genetic aetiology. These results motivate hypothesis-driven research to consider individual cardiometabolic traits rather than a composite metabolic syndrome when attempting to disentangle driving mechanisms of cardiometabolic abnormalities in BPD.

Keywords: Bipolar disorder; biomarkers; cardiometabolic abnormalities; cardiovascular disease; genetic correlation; polygenic score.