Removal of gut symbiotic bacteria negatively affects life history traits of the shield bug, Graphosoma lineatum

Ecol Evol. 2021 Feb 15;11(6):2515-2523. doi: 10.1002/ece3.7188. eCollection 2021 Mar.

Abstract

The shield bug, Graphosoma lineatum (Heteroptera, Pentatomidae), harbors extracellular Pantoea-like symbiont in the enclosed crypts of the midgut. The symbiotic bacteria are essential for normal longevity and fecundity of this insect. In this study, life table analysis was used to assess the biological importance of the gut symbiont in G. lineatum. Considering vertical transmission of the bacterial symbiont through the egg surface contamination, we used surface sterilization of the eggs to remove the symbiont. The symbiont population was decreased in the newborn nymphs hatched from the surface-sterilized eggs (the aposymbiotic insects), and this reduction imposed strongly negative effects on the insect host. We found significant differences in most life table parameters between the symbiotic insects and the aposymbiotics. The intrinsic rate of increase in the control insects (0.080 ± 0.003 day-1) was higher than the aposymbiotic insects (0.045 ± 0.007 day-1). Also, the net reproductive and gross reproductive rates were decreased in the aposymbiotic insects (i.e., 20.770 ± 8.992 and 65.649 ± 27.654 offspring/individual, respectively), compared with the symbiotic insects (i.e., 115.878 ± 21.624 and 165.692 ± 29.058 offspring/individual, respectively). These results clearly show biological importance of the symbiont in G. lineatum.

Keywords: Gammaproteobacteria; Pantoea‐like symbiont; gut bacteria; host; symbiont interaction.

Associated data

  • Dryad/10.5061/dryad.t4b8gtj12