Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China

Sci Total Environ. 2021 Aug 1:780:146557. doi: 10.1016/j.scitotenv.2021.146557. Epub 2021 Mar 18.

Abstract

Identification and quantification of the distribution, ecological risk, and sources of heavy metals in soils are essential for regional pollution control and management. In this study, spatial analysis (SA), GeogDetector model (GDM), and positive matrix factorization (PMF) model were combined to evaluate the status, ecological risk, and sources of heavy metals in soils from a typical coastal economic development area in Southeastern China. The mean contents of Cd, Pb, Cr, Cu, and Zn in the surface soils (0-20 cm) were 0.45, 41.72, 90.50, 47.86, and 145.33 mg/kg, respectively. In accordance, the mean contents of Cd exceeded the risk screening value for contamination of agricultural soil in China. Our results revealed that industrial and residential soils had higher enrichment of heavy metals than agricultural and fallow soils. Industrial production was the major driving factors influencing the spatial distribution of heavy metals. Soil OM and pH were found to be the most important factors affecting the potential ecological risk of heavy metals, followed by distance from the industrial enterprises and roads. Heavy metals in the study area were mainly originated from industrial emissions/atmospheric deposition, agricultural sources, and followed by natural sources. Therefore, regular monitoring and source control for heavy metals, especially for Cd, along with the integrated soil environmental management in the study area are crucial to ensure soil health and ecosystem security.

Keywords: GeogDetector model; Heavy metals; Potential ecological risk; Source identification; Spatial distribution.