Principles of Alternating Access in Multidrug and Toxin Extrusion (MATE) Transporters
- PMID: 33774036
- PMCID: PMC8292195
- DOI: 10.1016/j.jmb.2021.166959
Principles of Alternating Access in Multidrug and Toxin Extrusion (MATE) Transporters
Abstract
The multidrug and toxin extrusion (MATE) transporters catalyze active efflux of a broad range of chemically- and structurally-diverse compounds including antimicrobials and chemotherapeutics, thus contributing to multidrug resistance in pathogenic bacteria and cancers. Multiple methodological approaches have been taken to investigate the structural basis of energy transduction and substrate translocation in MATE transporters. Crystal structures representing members from all three MATE subfamilies have been interpreted within the context of an alternating access mechanism that postulates occupation of distinct structural intermediates in a conformational cycle powered by electrochemical ion gradients. Here we review the structural biology of MATE transporters, integrating the crystallographic models with biophysical and computational studies to define the molecular determinants that shape the transport energy landscape. This holistic analysis highlights both shared and disparate structural and functional features within the MATE family, which underpin an emerging theme of mechanistic diversity within the framework of a conserved structural scaffold.
Keywords: DinF; MATE; NorM; PfMATE; alternating access; antiport; multidrug resistance.
Copyright © 2021 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
Similar articles
-
Structural basis for the blockade of MATE multidrug efflux pumps.Nat Commun. 2015 Aug 6;6:7995. doi: 10.1038/ncomms8995. Nat Commun. 2015. PMID: 26246409 Free PMC article.
-
Sequence and structural determinants of ligand-dependent alternating access of a MATE transporter.Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4732-4740. doi: 10.1073/pnas.1917139117. Epub 2020 Feb 19. Proc Natl Acad Sci U S A. 2020. PMID: 32075917 Free PMC article.
-
Structural insights into H+-coupled multidrug extrusion by a MATE transporter.Nat Struct Mol Biol. 2013 Nov;20(11):1310-7. doi: 10.1038/nsmb.2687. Epub 2013 Oct 20. Nat Struct Mol Biol. 2013. PMID: 24141706 Free PMC article.
-
Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications.Channels (Austin). 2016;10(2):88-100. doi: 10.1080/19336950.2015.1106654. Epub 2015 Oct 21. Channels (Austin). 2016. PMID: 26488689 Free PMC article. Review.
-
Structural biology of the multidrug and toxic compound extrusion superfamily transporters.Biochim Biophys Acta Biomembr. 2020 Dec 1;1862(12):183154. doi: 10.1016/j.bbamem.2019.183154. Epub 2019 Dec 19. Biochim Biophys Acta Biomembr. 2020. PMID: 31866287 Review.
Cited by
-
Prediction of Inhibitory Activity against the MATE1 Transporter via Combined Fingerprint- and Physics-Based Machine Learning Models.J Chem Inf Model. 2024 Sep 23;64(18):7068-7076. doi: 10.1021/acs.jcim.4c00921. Epub 2024 Sep 10. J Chem Inf Model. 2024. PMID: 39254593 Free PMC article.
-
Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence.Microorganisms. 2022 Feb 7;10(2):382. doi: 10.3390/microorganisms10020382. Microorganisms. 2022. PMID: 35208837 Free PMC article. Review.
-
Platinum-Acridine Agents with High Activity in Cancers Expressing the Solute Carrier MATE1 (SLC47A1).ACS Med Chem Lett. 2023 Jul 25;14(8):1122-1128. doi: 10.1021/acsmedchemlett.3c00266. eCollection 2023 Aug 10. ACS Med Chem Lett. 2023. PMID: 37583829 Free PMC article.
-
Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation.Front Plant Sci. 2021 Oct 27;12:758202. doi: 10.3389/fpls.2021.758202. eCollection 2021. Front Plant Sci. 2021. PMID: 34777438 Free PMC article. Review.
-
Ion and lipid orchestration of secondary active transport.Nature. 2024 Feb;626(8001):963-974. doi: 10.1038/s41586-024-07062-3. Epub 2024 Feb 28. Nature. 2024. PMID: 38418916 Review.
References
-
- Du D, van Veen HW, Murakami S, Pos KM & Luisi BF (2015). Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 33, 76–91. - PubMed
-
- Higgins CF (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature 446, 749–57. - PubMed
-
- Alibert S, N’Gompaza Diarra J, Hernandez J, Stutzmann A, Fouad M, Boyer G & Pages JM (2017). Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective. Expert Opin Drug Metab Toxicol 13, 301–309. - PubMed
-
- Gottesman MM, Fojo T & Bates SE (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2, 48–58. - PubMed
-
- Blair JM, Webber MA, Baylay AJ, Ogbolu DO & Piddock LJ (2014). Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13, 42–51. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
