Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production

Appl Environ Microbiol. 1988 Apr;54(4):872-7. doi: 10.1128/aem.54.4.872-877.1988.

Abstract

When mixed ruminal bacteria were inoculated into semicontinuous cultures (25% transfer every other day) containing lactate, dulcitol, pectin, or xylose and Trypticase (1 g/liter) as the sole nitrogen source, the specific activity of ammonia production increased. The greatest enrichment was observed with lactate and xylose, and in these cases the specific rate of ammonia production was eightfold higher than that of the ruminal fluid control (approximately 35 nmol of ammonia per mg of protein per min). Isolates with different morphologies were obtained from each of the enrichments, but in no case did the specific activity of any isolate exceed that of the mixed ruminal bacteria. If Trypticase (15 g/liter) was used as the only energy and nitrogen source, there was an even greater increase in ammonia production, and two monensin-sensitive bacteria, a Peptostreptococcus species and a Clostridium species, were obtained. The Peptostreptococcus species was unable to grow on any of 25 carbohydrate or carbohydrate derivatives tested; but the Clostridium species was able to use glucose, maltose, fructose, cellobiose, trehalose, sorbitol, and salicin as energy sources. Neither organism was able to grow in the absence of an amino acid source, but growth rates on Trypticase were greater than 0.35/h. The specific activities of ammonia production were 346 and 427 nmol/mg of protein per min for strains of Peptostreptococcus and Clostridium, respectively. Megasphaera elsdenii and Bacteroides ruminicola, previously isolated ruminal ammonia producers, had specific activities of only 11 and 19 nmol of ammonia per mg of protein per min, respectively. The most probable number of Clostridium species in ruminal fluid was less than 10(3)/ml, but the Peptostreptococcus species was present at 10(8)/ml.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia / metabolism
  • Animals
  • Bacteria / genetics
  • Bacteria / growth & development*
  • Bacteria / isolation & purification
  • Cattle
  • DNA, Bacterial / isolation & purification
  • Female
  • Fermentation
  • Rumen / microbiology*

Substances

  • DNA, Bacterial
  • Ammonia