Asymmetric Hysteresis Loops in Structured Ferromagnetic Nanoparticles with Hard/Soft Areas

Nanomaterials (Basel). 2021 Mar 21;11(3):800. doi: 10.3390/nano11030800.


Horizontally shifted and asymmetric hysteresis loops are often associated with exchange-biased samples, consisting of a ferromagnet exchange coupled with an antiferromagnet. In purely ferromagnetic samples, such effects can occur due to undetected minor loops or thermal effects. Simulations of ferromagnetic nanostructures at zero temperature with sufficiently large saturation fields should not lead to such asymmetries. Here we report on micromagnetic simulations at zero temperature, performed on sputtered nanoparticles with different structures. The small deviations of the systems due to random anisotropy orientations in the different grains can not only result in strong deviations of magnetization reversal processes and hysteresis loops, but also lead to distinctly asymmetric, horizontally shifted hysteresis loops in purely ferromagnetic nanoparticles.

Keywords: OOMMF; micromagnetic simulation; minor loop; pseudo-exchange bias; spintronics.