Balanced Intense Exercise Training Induces Atrial Oxidative Stress Counterbalanced by the Antioxidant System and Atrial Hypertrophy That Is Not Associated with Pathological Remodeling or Arrhythmogenicity

Antioxidants (Basel). 2021 Mar 15;10(3):452. doi: 10.3390/antiox10030452.


Although regular exercise training is associated with cardiovascular benefits, the increased risk of atrial arrhythmias has been observed after vigorous exercise and has been related to oxidative stress. We aimed at investigating exercise-induced atrial remodeling in a rat model of an athlete's heart and determining sex-specific differences. Age-matched young adult rats were divided into female exercised, female control, male exercised, and male control groups. After exercised animals completed a 12-week-long swim training protocol, echocardiography and in vivo cardiac electrophysiologic investigation were performed. Additionally, atrial histological and gene expression analyses were carried out. Post-mortem atrial weight data and histological examination confirmed marked atrial hypertrophy. We found increased atrial gene expression of antioxidant enzymes along with increased nitro-oxidative stress. No gene expression alteration was found regarding markers of pathological remodeling, apoptotic, proinflammatoric, and profibrotic processes. Exercise training was associated with a prolonged right atrial effective refractory period. We could not induce arrhythmias by programmed stimulation in any groups. We found decreased expression of potassium channels. Female gender was associated with lower profibrotic expression and collagen density. Long-term, balanced exercise training-induced atrial hypertrophy is not associated with harmful electrical remodeling, and no inflammatory or profibrotic response was observed in the atrium of exercised rats.

Keywords: athlete’s heart; atrial remodeling; in vivo electrophysiology; myocardial antioxidant system.