Explainable Machine Learning Model for Glaucoma Diagnosis and Its Interpretation

Diagnostics (Basel). 2021 Mar 13;11(3):510. doi: 10.3390/diagnostics11030510.

Abstract

The aim is to develop a machine learning prediction model for the diagnosis of glaucoma and an explanation system for a specific prediction. Clinical data of the patients based on a visual field test, a retinal nerve fiber layer optical coherence tomography (RNFL OCT) test, a general examination including an intraocular pressure (IOP) measurement, and fundus photography were provided for the feature selection process. Five selected features (variables) were used to develop a machine learning prediction model. The support vector machine, C5.0, random forest, and XGboost algorithms were tested for the prediction model. The performance of the prediction models was tested with 10-fold cross-validation. Statistical charts, such as gauge, radar, and Shapley Additive Explanations (SHAP), were used to explain the prediction case. All four models achieved similarly high diagnostic performance, with accuracy values ranging from 0.903 to 0.947. The XGboost model is the best model with an accuracy of 0.947, sensitivity of 0.941, specificity of 0.950, and AUC of 0.945. Three statistical charts were established to explain the prediction based on the characteristics of the XGboost model. Higher diagnostic performance was achieved with the XGboost model. These three statistical charts can help us understand why the machine learning model produces a specific prediction result. This may be the first attempt to apply "explainable artificial intelligence" to eye disease diagnosis.

Keywords: glaucoma; machine learning; model explanation; prediction.

Grants and funding