Underwater Object Recognition Using Point-Features, Bayesian Estimation and Semantic Information

Sensors (Basel). 2021 Mar 5;21(5):1807. doi: 10.3390/s21051807.

Abstract

This paper proposes a 3D object recognition method for non-coloured point clouds using point features. The method is intended for application scenarios such as Inspection, Maintenance and Repair (IMR) of industrial sub-sea structures composed of pipes and connecting objects (such as valves, elbows and R-Tee connectors). The recognition algorithm uses a database of partial views of the objects, stored as point clouds, which is available a priori. The recognition pipeline has 5 stages: (1) Plane segmentation, (2) Pipe detection, (3) Semantic Object-segmentation and detection, (4) Feature based Object Recognition and (5) Bayesian estimation. To apply the Bayesian estimation, an object tracking method based on a new Interdistance Joint Compatibility Branch and Bound (IJCBB) algorithm is proposed. The paper studies the recognition performance depending on: (1) the point feature descriptor used, (2) the use (or not) of Bayesian estimation and (3) the inclusion of semantic information about the objects connections. The methods are tested using an experimental dataset containing laser scans and Autonomous Underwater Vehicle (AUV) navigation data. The best results are obtained using the Clustered Viewpoint Feature Histogram (CVFH) descriptor, achieving recognition rates of 51.2%, 68.6% and 90%, respectively, clearly showing the advantages of using the Bayesian estimation (18% increase) and the inclusion of semantic information (21% further increase).

Keywords: 3D object recognition; AUV; Bayesian probabilities; JCBB; autonomous manipulation; global descriptors; inspection; laser scanner; maintenance and repair; multi-object tracking; pipeline detection; point clouds; semantic information; semantic segmentation; underwater environment.