Oxidative Stress Conditions Result in Trapping of PHF-Core Tau (297-391) Intermediates

Cells. 2021 Mar 22;10(3):703. doi: 10.3390/cells10030703.

Abstract

The self-assembly of tau into paired helical filaments (PHFs) in neurofibrillary tangles (NFTs) is a significant event in Alzheimer's disease (AD) pathogenesis. Numerous post-translational modifications enhance or inhibit tau assembly into NFTs. Oxidative stress, which accompanies AD, induces multiple post-translational modifications in proteins, including the formation of dityrosine (DiY) cross-links. Previous studies have revealed that metal-catalysed oxidation (MCO) using Cu2+ and H2O2 leads to the formation of DiY cross-links in two misfolding proteins, Aβ and α-synuclein, associated with AD and Parkinson's disease respectively. The effect of MCO on tau remains unknown. Here, we examined the effect of MCO and ultra-violet oxidation to study the influence of DiY cross-linking on the self-assembly of the PHF-core tau fragment. We report that DiY cross-linking facilitates tau assembly into tau oligomers that fail to bind thioflavin S, lack β-sheet structure and prevents their elongation into filaments. At a higher concentration, Cu2+ (without H2O2) also facilitates the formation of these tau oligomers. The DiY cross-linked tau oligomers do not cause cell death. Our findings suggest that DiY cross-linking of pre-assembled tau promotes the formation of soluble tau oligomers that show no acute impact on cell viability.

Keywords: Alzheimer’s disease; dityrosine; oxidative stress; paired helical filaments; tau.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Chelating Agents / pharmacology
  • Copper / pharmacology
  • Edetic Acid / pharmacology
  • Humans
  • Hydrogen Peroxide / pharmacology
  • Neurons / drug effects
  • Neurons / metabolism*
  • Neurons / pathology
  • Oxidants / pharmacology
  • Oxidative Stress* / drug effects
  • Peptide Fragments / metabolism*
  • Protein Conformation, beta-Strand
  • Protein Multimerization
  • Protein Processing, Post-Translational* / drug effects
  • Reactive Oxygen Species / metabolism*
  • Solubility
  • Structure-Activity Relationship
  • tau Proteins / metabolism*

Substances

  • Chelating Agents
  • MAPT protein, human
  • Oxidants
  • Peptide Fragments
  • Reactive Oxygen Species
  • tau Proteins
  • Copper
  • Edetic Acid
  • Hydrogen Peroxide