Poly(Ethylene Glycol)-Poly(l-Alanine)/Hyaluronic Acid Complex as a 3D Platform for Understanding Cancer Cell Migration in the Tumor Microenvironment

Polymers (Basel). 2021 Mar 26;13(7):1042. doi: 10.3390/polym13071042.

Abstract

Cancer progression and migration in the tumor microenvironment are related to cell types and three-dimensional (3D) matrices. Therefore, developing biomimetic tumor models, including co-culture systems and a tunable 3D matrix, could play an essential role in understanding the cancer environment. Here, multicellular spheroids using human adipose-derived mesenchymal stem cells (hADSCs) and breast cancer cells (MDA-MB-231) within the 3D matrix were used as a tumor microenvironment (TME) mimicking platform. The amphiphilic peptide block copolymer and hyaluronic acid (HA) formed a self-assembled structure, which provides a biocompatible 3D environment for the cells. Multicellular spheroids were formed on the optimized plate and were observed as cell migration from a spheroid within a 3D matrix, such as the invasive and metastatic cancer of TME. This study suggests a new 3D platform using polymer complexes and the importance of tumor complexities, including various cell types and microenvironments.

Keywords: 3D matrix; migration; multicellular spheroid; polymer complex; tumor microenvironment.