Scopolamine Impairs Spatial Information Recorded With "Miniscope" Calcium Imaging in Hippocampal Place Cells

Front Neurosci. 2021 Mar 19:15:640350. doi: 10.3389/fnins.2021.640350. eCollection 2021.

Abstract

The hippocampus and associated cholinergic inputs have important roles in spatial memory in rodents. Muscarinic acetylcholine receptors (mAChRs) are involved in the communication of cholinergic signals and regulate spatial memory. They have been found to impact the memory encoding process, but the effect on memory retrieval is controversial. Previous studies report that scopolamine (a non-selective antagonist of mAChR) induces cognitive deficits on animals, resulting in impaired memory encoding, but the effect on memory retrieval is less certain. We tested the effects of blocking mAChRs on hippocampal network activity and neural ensembles that had previously encoded spatial information. The activity of hundreds of neurons in mouse hippocampal CA1 was recorded using calcium imaging with a miniaturised fluorescent microscope and properties of place cells and neuronal ensemble behaviour in a linear track environment were observed. We found that the decoding accuracy and the stability of spatial representation revealed by hippocampal neural ensemble were significantly reduced after the administration of scopolamine. Several other parameters, including neural firing rate, total number of active neurons, place cell number and spatial information content were affected. Similar results were also observed in a simulated hippocampal network model. This study enhances the understanding of the function of mAChRs on spatial memory impairment.

Keywords: calcium imaging; mAChRs; miniature microscope; place cells; scopolamine.