Research on Differential Brain Networks before and after WM Training under Different Frequency Band Oscillations

Neural Plast. 2021 Mar 20;2021:6628021. doi: 10.1155/2021/6628021. eCollection 2021.

Abstract

Previous studies have shown that different frequency band oscillations are associated with cognitive processing such as working memory (WM). Electroencephalogram (EEG) coherence and graph theory can be used to measure functional connections between different brain regions and information interaction between different clusters of neurons. At the same time, it was found that better cognitive performance of individuals indicated stronger small-world characteristics of resting-state WM networks. However, little is known about the neural synchronization of the retention stage during ongoing WM tasks (i.e., online WM) by training on the whole-brain network level. Therefore, combining EEG coherence and graph theory analysis, the present study examined the topological changes of WM networks before and after training based on the whole brain and constructed differential networks with different frequency band oscillations (i.e., theta, alpha, and beta). The results showed that after WM training, the subjects' WM networks had higher clustering coefficients and shorter optimal path lengths than before training during the retention period. Moreover, the increased synchronization of the frontal theta oscillations seemed to reflect the improved executive ability of WM and the more mature resource deployment; the enhanced alpha oscillatory synchronization in the frontoparietal and fronto-occipital regions may reflect the enhanced ability to suppress irrelevant information during the delay and pay attention to memory guidance; the enhanced beta oscillatory synchronization in the temporoparietal and frontoparietal regions may indicate active memory maintenance and preparation for memory-guided attention. The findings may add new evidence to understand the neural mechanisms of WM on the changes of network topological attributes in the task-related mode.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alpha Rhythm / physiology
  • Beta Rhythm / physiology
  • Brain / physiology*
  • Brain Waves / physiology*
  • Electroencephalography / methods
  • Humans
  • Male
  • Memory, Short-Term / physiology*
  • Nerve Net / physiology*
  • Photic Stimulation / methods
  • Theta Rhythm / physiology
  • Young Adult