Importance: In recent years, there have been several meaningful advances in the understanding of the cognitive effects of chronic rhinosinusitis. However, an investigation exploring the potential link between the underlying inflammatory disease and higher-order neural processing has not yet been performed.
Objective: To describe the association of sinonasal inflammation with functional brain connectivity (Fc), which may underlie chronic rhinosinusitis-related cognitive changes.
Design, setting, and participants: This is a case-control study using the Human Connectome Project (Washington University-University of Minnesota Consortium of the Human Connectome Project 1200 release), an open-access and publicly available data set that includes demographic, imaging, and behavioral data for 1206 healthy adults aged 22 to 35 years. Twenty-two participants demonstrated sinonasal inflammation (Lund-Mackay score [LMS] ≥ 10) and were compared with age-matched and sex-matched healthy controls (LMS = 0). These participants were further stratified into moderate (LMS < 14, n = 13) and severe (LMS ≥ 14, n = 9) inflammation groups. Participants were screened and excluded if they had a history of psychiatric disorder and/or neurological or genetic diseases. Participants with diabetes or cardiovascular disease were also excluded, as these conditions may affect neuroimaging quality. The data were accessed between October 2019 and August 2020. Data analysis was performed between May 2020 and August 2020.
Main outcomes and measures: The primary outcome was the difference in resting state Fc within and between the default mode, frontoparietal, salience, and dorsal attention brain networks. Secondary outcomes included assessments of cognitive function using the National Institutes of Health Toolbox Cognition Battery.
Results: A total of 22 patients with chronic rhinosinusitis and 22 healthy controls (2 [5%] were aged 22-25 years, 26 [59%] were aged 26-30 years, and 16 [36%] were aged 31-35 years; 30 [68%] were men) were included in the analysis. Participants with sinonasal inflammation showed decreased Fc within the frontoparietal network, in a region involving bilateral frontal medial cortices. This region demonstrated increased Fc to 2 nodes within the default-mode network and decreased Fc to 1 node within the salience network. The magnitude of these differences increased with inflammation severity (dose dependent). There were no significant associations seen on cognitive testing.
Conclusions and relevance: In this case-control study, participants with sinonasal inflammation showed decreased brain connectivity within a major functional hub with a central role in modulating cognition. This region also shows increased connectivity to areas that are activated during introspective and self-referential processing and decreased connectivity to areas involved in detection and response to stimuli. Future prospective studies are warranted to determine the applicability of these findings to a clinical chronic rhinosinusitis population.