Inverse modeling framework for characterizing patient-specific microstructural changes in the pulmonary arteries

J Mech Behav Biomed Mater. 2021 Jul:119:104448. doi: 10.1016/j.jmbbm.2021.104448. Epub 2021 Mar 27.

Abstract

Microstructural changes in the pulmonary arteries associated with pulmonary arterial hypertension (PAH) is not well understood and characterized in humans. To address this issue, we developed and applied a patient-specific inverse finite element (FE) modeling framework to characterize mechanical and structural changes of the micro-constituents in the proximal pulmonary arteries using in-vivo pressure measurements and magnetic resonance images. The framework was applied using data acquired from a pediatric PAH patient and a heart transplant patient with normal pulmonary arterial pressure, which serves as control. Parameters of a constrained mixture model that are associated with the structure and mechanical properties of elastin, collagen fibers and smooth muscle cells were optimized to fit the patient-specific pressure-diameter responses of the main pulmonary artery. Based on the optimized parameters, individual stress and linearized stiffness resultants of the three tissue constituents, as well as their aggregated values, were estimated in the pulmonary artery. Aggregated stress resultant and stiffness are, respectively, 4.6 and 3.4 times higher in the PAH patient than the control subject. Stress and stiffness resultants of each tissue constituent are also higher in the PAH patient. Specifically, the mean stress resultant is highest in elastin (PAH: 69.96, control: 14.42 kPa-mm), followed by those in smooth muscle cell (PAH: 13.95, control: 4.016 kPa-mm) and collagen fibers (PAH: 13.19, control: 2.908 kPa-mm) in both the PAH patient and the control subject. This result implies that elastin may be the key load-bearing constituent in the pulmonary arteries of the PAH patient and the control subject.

Keywords: Inverse finite element; Pulmonary arterial hypertension; Pulmonary vascular stiffness; Vascular remodeling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Child
  • Elastin*
  • Humans
  • Lung
  • Myocytes, Smooth Muscle
  • Pulmonary Artery* / diagnostic imaging

Substances

  • Elastin