Reactions of nitrite with goethite and surface Fe(II)-goethite complexes

Sci Total Environ. 2021 Aug 15;782:146406. doi: 10.1016/j.scitotenv.2021.146406. Epub 2021 Mar 17.


Chemodenitrification-the abiotic (chemical) reduction of nitrite (NO2-) by iron (II)-plays an important role in nitrogen cycling due in part to this process serving as a source of nitrous oxide (N2O). Questions remain about the fate of NO2- in the presence of mineral surfaces formed during chemodenitrification, such as iron(III) (hydr) oxides, particularly relative to dissolved iron(II). In this study, stirred-batch kinetic experiments were conducted under anoxic conditions (to mimic iron(III)-reducing conditions) from pH 5.5-8 to investigate NO2- reactivity with goethite (FeOOH(s)) and Fe(II)-treated goethite using wet chemical and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Nitrite removal from solution by goethite was more rapid at pH 5.5 than at pH 7 and 8. Spectral changes upon nitrite adsorption imply an inner-sphere surface interaction (monodentate and bidentate) at pH 5.5 based on ATR-FTIR spectra of the nitrite-goethite interface over time. In iron(II)-amended experiments at pH 5.5 with high aqueous Fe(II) in equilibrium with goethite, nitrous oxide was generated, indicating that nitrite removal involved a combination of sorption and reduction processes. The presence of a surface complex resembling protonated nitrite (HONO) with an IR peak near ~1258 cm-1 was observed in goethite-only and iron(II)-goethite experiments, with a greater abundance of this species observed in the latter treatment. These results might help explain gaseous losses of nitrogen where nitrite and iron(II)/goethite coexist, with implications for nutrient cycling and release of atmospheric air pollutants.

Keywords: Chemodenitrification; Goethite; Infrared spectroscopy; Nitrite; Nitrous oxide; Redox transformation; Sorption.