A simple and fast ASD-POCS algorithm for image reconstruction

J Xray Sci Technol. 2021;29(3):491-506. doi: 10.3233/XST-210858.

Abstract

Purpose: The adaptive steepest descent projection onto convex set (ASD-POCS) algorithm is a promising algorithm for constrained total variation (TV) type norm minimization models in computed tomography (CT) image reconstruction using sparse and/or noisy data. However, in ASD-POCS algorithm, the existing gradient expression of the TV-type norm appears too complicated in the implementation code and reduces image reconstruction speed. To address this issue, this work aims to develop and test a simple and fast ASD-POCS algorithm.

Methods: Since the original algorithm is not derived thoroughly, we first obtain a simple matrix-form expression by thorough derivation via matrix representations. Next, we derive the simple matrix expressions of the gradients of TV, adaptive weighted TV (awTV), total p-variation (TpV), high order TV (HOTV) norms by term combinations and matrix representations. The deep analysis is then performed to identify the hidden relations of these terms.

Results: The TV reconstruction experiments by use of sparse-view projections via the Shepp-Logan, FORBILD and a real CT image phantoms show that the simplified ASD-POCS (S-ASD-POCS) using the simple matrix-form expression of TV gradient achieve the same reconstruction accuracy relative to ASD-POCS, whereas it enables to speed up the whole ASD process 1.8-2.7 time fast.

Conclusions: The derived simple matrix expressions of the gradients of these TV-type norms may simplify the implementation of the ASD-POCS algorithm and speed up the ASD process. Additionally, a general gradient expression suitable to all the sparse transform-based optimization models is demonstrated so that the ASD-POCS algorithm may be tailored to extended image reconstruction fields with accelerated computational speed.

Keywords: ASD-POCS; TV gradient; image reconstruction; matrix-form expression; total variation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Autism Spectrum Disorder*
  • Humans
  • Image Processing, Computer-Assisted*
  • Phantoms, Imaging
  • Tomography, X-Ray Computed