Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant ( Harpegnathos saltator)

Proc Biol Sci. 2021 Apr 14;288(1948):20210141. doi: 10.1098/rspb.2021.0141. Epub 2021 Apr 14.

Abstract

Phenotypic plasticity allows organisms to respond to changing environments throughout their lifetime, but these changes are rarely reversible. Exceptions occur in relatively long-lived vertebrate species that exhibit seasonal plasticity in brain size, although similar changes have not been identified in short-lived species, such as insects. Here, we investigate brain plasticity in reproductive workers of the ant Harpegnathos saltator. Unlike most ant species, workers of H. saltator are capable of sexual reproduction, and they compete in a dominance tournament to establish a group of reproductive workers, termed 'gamergates'. We demonstrated that, compared to foragers, gamergates exhibited a 19% reduction in brain volume in addition to significant differences in behaviour, ovarian status, venom production, cuticular hydrocarbon profile, and expression profiles of related genes. In experimentally manipulated gamergates, 6-8 weeks after being reverted back to non-reproductive status their phenotypes shifted to the forager phenotype across all traits we measured, including brain volume, a trait in which changes were previously shown to be irreversible in honeybees and Drosophila. Brain plasticity in H. saltator is therefore more similar to that found in some long-lived vertebrates that display reversible changes in brain volume throughout their lifetimes.

Keywords: Harpegnathos; brain plasticity; cuticular hydrocarbons; reproduction; social insects; venom production.