Autoantibodies stabilize neutrophil extracellular traps in COVID-19

medRxiv [Preprint]. 2021 Jun 24:2021.03.31.21254692. doi: 10.1101/2021.03.31.21254692.

Abstract

The release of neutrophil extracellular traps ( NETs ) by hyperactive neutrophils is recognized to play an important role in the thromboinflammatory milieu inherent to severe presentations of COVID-19. At the same time, a variety of functional autoantibodies have been observed in individuals with severe COVID-19 where they likely contribute to immunopathology. Here, we aimed to determine the extent to which autoantibodies might target NETs in COVID-19 and, if detected, to elucidate their potential functions and clinical associations. We measured anti-NET antibodies in 328 individuals hospitalized with COVID-19 alongside 48 healthy controls. We found high anti-NET activity in the IgG and IgM fractions of 27% and 60% of patients, respectively. There was a strong correlation between anti-NET IgG and anti-NET IgM (r=0.4, p<0.0001). Both anti-NET IgG and IgM tracked with high levels of circulating NETs, impaired oxygenation efficiency, and high circulating D-dimer. Furthermore, patients who required mechanical ventilation had a greater burden of anti-NET antibodies than did those not requiring oxygen supplementation. Levels of anti-NET IgG (and to a lesser extent anti-NET IgM) demonstrated an inverse correlation with the efficiency of NET degradation by COVID sera. Furthermore, purified IgG from COVID sera with high levels of anti-NET antibodies impaired the ability of healthy control serum to degrade NETs. In summary, many individuals hospitalized with COVID-19 have anti-NET antibodies, which likely impair NET clearance and may potentiate SARS-CoV-2-mediated thromboinflammation.

Publication types

  • Preprint