Spatio-temporal variations and input patterns on the legacy and novel brominated flame retardants (BFRs) in coastal rivers of North China

Environ Pollut. 2021 Aug 15:283:117093. doi: 10.1016/j.envpol.2021.117093. Epub 2021 Apr 7.


Decabromodiphenyl ether (BDE209) has been subject to restrictions since 2018 in developed countries but is still manufacturing in China. Decabromodiphenyl ethane (DBDPE) is widely used as a replacement for BDE209. To better understand the behaviors and fates of these legacy and novel brominated flame retardants (BFRs), water samples were collected from the estuaries of 36 rivers that drain into the Bohai Sea (BS) and North Yellow Sea (NYS) in 2017 and 2018. The results showed that BDE209 was still the predominant compound with a median concentration of 2470 pg L-1, whereas DBDPE had a median concentration of 129 pg L-1. Spatially, relatively high concentrations were observed in the rivers near Laizhou Bay (LB), which is the manufacturing hub of BFRs. BDE209 concentrations were significantly higher in dry season than in wet season, which indicates a dominant process of dilution by precipitation during the wet season. DBDPE concentration showed no significant seasonal difference. This implies that wet deposition was the major additional source of DBDPE during the wet season, and the concentration increased further during the autumn as a result of a time-lag effect. The BFR concentrations in urban rivers were lower than those reported by a study undertaken in August 2013. An increase in the BFR concentrations in rural rivers since 2013 suggested increases in the use and non-point source emissions of BFRs in some remote aquatic environments. The estimated annual inputs of BDE209 and DBDPE into the BS were ∼95.9 kg yr-1 and ∼26.8 kg yr-1, respectively, whereas those into the NYS were ∼24.1 kg yr-1 and ∼8.38 kg yr-1. The results revealed an ecological risk of BDE209 in winter especially in the Xiaoqing River, thus suggesting the impact of BDE209 on the aquatic environment and human health.

Keywords: Biodegradation; Halogenated flame retardants; High risk; Production; Wet deposition.

MeSH terms

  • China
  • Environmental Monitoring
  • Flame Retardants* / analysis
  • Halogenated Diphenyl Ethers / analysis
  • Humans
  • Rivers


  • Flame Retardants
  • Halogenated Diphenyl Ethers