Manganese-induced alpha-synuclein overexpression aggravates mitochondrial damage by repressing PINK1/Parkin-mediated mitophagy

Food Chem Toxicol. 2021 Jun:152:112213. doi: 10.1016/j.fct.2021.112213. Epub 2021 Apr 20.

Abstract

Chronic manganese (Mn) exposure is related to elevated risks of neurodegenerative diseases, and mitochondrial dysfunction is considered a critical pathophysiological feature of Mn neurotoxicity. Although previous research has demonstrated Mn-induced alpha-synuclein (α-Syn) overexpression, the role of α-Syn in mitochondrial dysfunction remains unclear. Here, we used Wistar rats and human neuroblastoma cells (SH-SY5Y cells) to elucidate the molecular mechanisms underlying how α-Syn overexpression induced by different doses of Mn (15, 30, and 60 mg/kg) results in mitochondrial dysfunction. We found that Mn-induced neural cell injury was associated with mitochondrial damage. Furthermore, Mn upregulated α-Syn protein levels and increased the interaction between α-Syn and mitochondria. We then used a lentivirus vector containing α-Syn shRNA to examine the effect of Mn-induced α-Syn protein on PINK1/Parkin-mediated mitophagy in SH-SY5Y cells. Our data demonstrated that the knockdown of α-Syn decreased the interaction between α-Syn and PINK1. The enhanced level of phosphorylated Parkin (p-Parkin) was due to the decrease of the interaction between α-Syn and PINK1. Moreover, the knockdown of α-Syn increased recruitment of p-Parkin to mitochondria. Collectively, these observations revealed that Mn-induced α-Syn overexpression repressed PINK1/Parkin-mediated mitophagy and exacerbated mitochondrial damage.

Keywords: Mitophagy; Mn; Neurotoxicity; α-Syn.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Female
  • Gait / drug effects
  • Humans
  • Male
  • Manganese / toxicity*
  • Mitochondria / drug effects*
  • Mitophagy / drug effects*
  • Neurons / drug effects
  • Open Field Test / drug effects
  • Phosphorylation / drug effects
  • Protein Kinases / metabolism*
  • Rats
  • Rats, Wistar
  • Ubiquitin-Protein Ligases / metabolism*
  • alpha-Synuclein / metabolism*

Substances

  • Snca protein, rat
  • alpha-Synuclein
  • Manganese
  • Ubiquitin-Protein Ligases
  • parkin protein
  • Protein Kinases
  • PTEN-induced putative kinase