[Accelerated telomere erosion in schizophrenia: A literature review]

Encephale. 2021 Aug;47(4):369-375. doi: 10.1016/j.encep.2020.12.001. Epub 2021 Apr 15.
[Article in French]

Abstract

Schizophrenia is associated with a weighted average of 14.5 years of potential life lost according to a recent meta-analysis. This is partly explained by high rates of suicide and a high prevalence of non-psychiatric comorbidity (cardiovascular diseases, diabetes, cancers…). However, all these causes could not fully explain the loss of life expectancy in people suffering from schizophrenia. Life expectancy has been strongly correlated with telomere length (TL). Telomeres are noncoding structures consisting of DNA TTAGGG tandem repeats and associated proteins located at the end of the chromosomes. Their role is to help preserve genome stability by protecting chromosomal ends from the loss of genetic material. The progressive loss of telomeric material during cell divisions has led researchers to consider telomeres as molecular clocks that measure the number of divisions left until cellular death. The fact that both shorter telomeres and schizophrenia have been associated with a decrease in life expectancy has fueled the interest in the study of TL in schizophrenia. In this article, after a detailed review of the literature on the relationships between telomere length and schizophrenia, we discuss the different pathophysiological mechanisms which might explain this association. Based on this analysis, in the last part of the article we discuss potential research, therapeutic and prevention prospects. To date, the majority of the studies and meta-analyses found a decrease in TL in subjects with schizophrenia compared to control subjects. Conversely, all the studies exploring the TL in subjects suffering from first episode psychosis (FEP) have shown no significant difference from TL in control subjects. This suggests that excessive shortening of telomeres occurs during the course of the disease, thus it seems more probable that schizophrenia (or processes associated with it) affects TL rather than telomere erosion being a cause of the disorder. Several pathophysiological, non-mutually exclusive mechanisms have been proposed to explain the observed data. A first hypothesis to explain the acceleration of the physiological process of telomere erosion in schizophrenia is the activation of inflammation processes and oxidative stress as a consequence of schizophrenia per se. However, it seems more probable that reduced TL may be a result of cumulative exposure to chronic stress related to schizophrenia. Indeed, in healthy individuals a growing body of evidence has linked chronic stress to accelerated shortening of TL. This might explain why telomere erosion is too small to be detected in FEP patients who are younger and have a shorter duration of illness than subjects with schizophrenia. Based on these both explanations, telomere alterations may be considered as a biomarker of illness progression and might be useful for illness staging. Identifying processes associated with TL reduction might improve our understanding of the increased mortality and morbidity in schizophrenia, improve reliability of diagnosis, and hopefully suggest means for prevention and/or treatment. Treatments that prevent exposure and/or vulnerability to stressful life events that ameliorate schizophrenia may also prevent or decelerate telomere erosion. In this perspective, engaging subjects suffering from schizophrenia in a healthy diet and regular activity could be both promising strategies to protect telomere maintenance and improve health span at old age. In addition, the inflammatory process and oxidative stress involved in the physiopathology in at least a subgroup of subjects with schizophrenia could also be responsible for telomere erosion. Thus, an efficient anti-inflammatory therapeutic approach that targets these specific pathways could be of interest in this subgroup to limit telomere erosion. Mindfulness-based stress reduction (MBSR) therapies have been shown to reduce telomere erosion by increasing telomerase activity, although these psychological therapies should be used carefully in psychosis. Finally, advancing our understanding of the relationship between stress, inflammation and TL is of great interest for psychiatric research and for understanding stress effects in this population.

Keywords: Espérance de vie; Inflammation; Life expectancy; Schizophrenia; Schizophrénie; Stress; Telomere; Télomères.

Publication types

  • English Abstract